JUNE 2011 TRAC

Eastern GB cod, EGB haddock, and GB yellowtail flounder

NEFMC
Danvers, MA
September 28, 2011

Resource

Allocation
 Shares

Resource Utilization					Resource Utilization and DistributionWeighting			Allocation Shares					
USACANADA		Cod	Haddock	Ytl									
		40\%	45\%	98\%									
		60\%	55\%	2\%									
	Resource Distribution												
	Survey Year	Cod	Haddock	Ytl				Fishing Year	Utilization	Distribution	Cod	Haddock	Ytl
USA	2000	18\%	20\%	54\%	2002	40\%	60\%	27\%	30\%	72\%			
CANADA		82\%	80\%	46\%				73\%	70\%	28\%			
USA	2001	14\%	16\%	64\%	2003	40\%	60\%	24\%	28\%	78\%			
CANADA		86\%	84\%	36\%				76\%	72\%	22\%			
USA	2002	12\%	26\%	62\%	2004	40\%	60\%	23\%	34\%	76\%			
CANADA		88\%	74\%	38\%				77\%	66\%	24\%			
USA	2003	18\%	27\%	56\%	2005	35\%	65\%	26\%	33\%	71\%			
CANADA		82\%	73\%	44\%				74\%	67\%	29\%			
USA	2004	14\%	29\%	56\%	2006	30\%	70\%	22\%	34\%	69\%			
CANADA		86\%	71\%	44\%				78\%	66\%	31\%			
USA	2005	21\%	29\%	63\%	2007	25\%	75\%	26\%	33\%	72\%			
CANADA		79\%	71\%	37\%				74\%	67\%	28\%			
USA	2006	26\%	32\%	73\%	2008	20\%	80\%	29\%	35\%	78\%			
CANADA		74\%	68\%	27\%				71\%	65\%	22\%			
USA	2007	29\%	36\%	73\%	2009	15\%	85\%	31\%	37\%	77\%			
CANADA		71\%	64\%	27\%				69\%	63\%	23\%			
USA	2008	23\%	40\%	60\%	2010	10\%	90\%	25\%	40.5\%	64\%			
CANADA		77\%	60\%	40\%				75\%	59.5\%	36\%			
USA	2009	17\%	43\%	50\%	2011	10\%	90\%	19\%	43\%	55\%			
CANADA		83\%	57\%	50\%				81\%	57\%	45\%			
USA	2010	22\%	43\%	44\%	2012	10\%	90\%	24\%	43\%	49\%			
CANADA		78\%	57\%	56\%				76\%	57\%	51\%			

Eastern GB Atlantic Cod Management Unit

Management Unit

USA: SA 561,562 CA: SA 551,552

Canadian and USA Total Catch

- USA+CA 2010 total catch: 1,326 mt (CY) ; 221 mt discards
- USA 2010 catch 486 mt : 357 mt landings; 129 mt discards
- Canadian 2010 catch 840 mt: 748 mt landings; 92 mt discards
- US: 100\% quota , CA: 83\% quota

Assessment

- Two VPA formulations: split "M 0.2" \& "M 0.5"
- Natural mortality (M) = 0.2 for all ages in "M 0.2" model, increased M for ages $6+$ in "M 0.5 " model after 1994
-Survey indices split in 1993-1994 for both models (change in sv catchability an alias for unknown mechanism that produces better fitting model)
- Benchmark: consider both model formulations until the fate of the 2003 year class has been documented, thus providing information on M .
-Retrospective: overestimate B, underestimate F.

3+ Biomass (dotted lines)

- 3,288 mt (split M 0.2) / 5,088 mt (split M 0.5) - 2011
- Increase since 2004/05 due to 2003 year class
- Biomass is $2^{\text {nd }}$ lowest in both models

Survey \& VPA 1+ Biomass

1+ popn. biomass \& SV biomass indices:

- fluctuating at low values since 1994

Recruitment

M 0.2 - 2003 yc (2.8 mil.) ~ 1992 ;strongest since 1998 M 0.5-2003 yc (4.1 mil.) ~ 1996 ;strongest since 1996 2007-2008-2009 YCs (0.8 mil. - 1.2 mil. age 1 fish) ~among weakest in time series

Fishing Mortality

2010 F= 0.41 (M 0.2) / 0.25 (M 0.5).
Among lowest F on record ; still above $F_{\text {ref }}$
$F>F_{\text {ref }}(0.18)$ for entire time series

Stock Recruitment

Remain at low productivity; low weights at age Rct event more likely > 30,000 mt SSB

2012 Projection : Fref

Probability of exceeding Fref in $\mathbf{2 0 1 2}$	$\mathbf{2 5 \%}$	$\mathbf{5 0 \%}$	$\mathbf{7 5 \%}$	
Split M 0.2		525 mt	600 mt	700 mt
Split M 0.5		825 mt	925 mt	$1,025 \mathrm{mt}$

M 0.2 model: A catch of about 600 mt in 2012 will result in a neutral risk (50\%) that the fishing mortality rate in 2012 will exceed $\mathrm{F}_{\text {ref }}$ Split M 0.5 model: A catch of about 925 mt in 2012 will result in a neutral risk (50\%) that the fishing mortality rate in 2012 will exceed Fref

Risk that the 4+ adult biomass in $\mathbf{2 0 1 3}$			
will be lower than the 2012 biomass	$\mathbf{2 5 \%}$	$\mathbf{5 0 \%}$	$\mathbf{7 5 \%}$
Split M 0.2	$1,050 \mathrm{mt}$	$1,350 \mathrm{mt}$	$1,650 \mathrm{mt}$
Split M 0.5	500 mt	900 mt	$1,350 \mathrm{mt}$

Split M 0.2: 1,350 mt catch \rightarrow results in 50% risk that $4+$ biomass in $2013<2012$

Split M 0.5: 900 mt catch \rightarrow results 50% risk that 4+ biomass in $2013<2012$

Probability B_{2013} at age 4+ will not increase by 10%

Risk that the 4+ adult biomass in $\mathbf{2 0 1 3}$				
will not increase by 10\%		$\mathbf{2 5 \%}$	$\mathbf{5 0 \%}$	$\mathbf{7 5 \%}$
Split M 0.2		700 mt	$1,000 \mathrm{mt}$	$1,350 \mathrm{mt}$
Split M 0.5		--	300 mt	850 mt

Split M 0.2: 1,000 mt catch results in 50\% risk that 4+ biomass in 2013 will not increase by $\mathbf{1 0 \%}$

Split M 0.5: 300 mt catch results in 50% risk that 4+ biomass in 2013 will not increase by 10\%

Risk that the 4+ adult biomass in $\mathbf{2 0 1 3}$				
will not increase by 20\%		$\mathbf{2 5 \%}$	$\mathbf{5 0 \%}$	$\mathbf{7 5 \%}$
Split M 0.2		350 mt	650 mt	$1,050 \mathrm{mt}$
Split M 0.5	--	--	350 mt	

Split M 0.2: 650 mt catch results in 50\% risk that 4+ biomass in 2013 will not increase by 20%

Split M 0.5: No amount of catch results in 50\% risk that 4+ biomass in 2013 will not increase by 20\%

EGB Cod

	Split M 0.2			Split M 0.5		
	25\%	50\%	75\%	25\%	50\%	75\%
Probability of exceeding Fref in 2012	525 mt	600 mt	700 mt	825 mt	925 mt	1,025 mt
Risk that the 4+ adult biomass in 2013 will be lower than the 2012 biomass	1,050 mt	1,350 mt	1,650 mt	500 mt	900 mt	1,350 mt
Risk that the 4+ adult biomass in 2013 will not increase by 10\%	700 mt	1,000 mt	1,350 mt	--	300 mt	850 mt
Risk that the 4+ adult biomass in 2013 will not increase by 20\%	350 mt	650 mt	1,050 mt	--	--	350 mt

Catch advice should be lower than shown:

- The retrospective bias is not taken into account in these projections
- The split series introduces a change in survey catchability, which is an alias for a mechanism that is not understood - adds uncertainty to the model results.
- F reduced but still above $F_{\text {ref }}$; retrospective bias
- Recent recruitment among poorest
- Low numbers: 7+ fish; Reduced weights at age
- $2^{\text {nd }}$ lowest biomass ; Fishing below Fref will maintain a higher biomass
- Unable to benefit from 2003 YC : F > Fref
- Rebuilding: not w/o improved recruitment and F<Fref
- 2 models equally viable \& both should be considered
- Catch advice should be lower than shown:retrospective bias not taken into account in projections

Eastern GB Haddock

Management Unit

$E G B$ Haddock

EGB Haddock

CY: Total 2010 catch: 18,794 mt
US: 2,201 mt ; Canada: 16,592 mt
FY: Quota taken: US ~ 15\%, CA ~ 94\%

Fishing Mortality
EGB Haddock

$2010 \mathrm{~F}=0.15$, below or near Fref since 1995
F now estimated as average of ages 5-8

- 2010 biomass: 93,400 mt - 2009 record high 162,800 mt

Recruitment

- Preliminary est. 2010 YC ~ 557 mil. - Rct. ~ 9.0 mil. since 1990,w/o ‘00,'03,'10

Stock/Recruitment

EGB Haddock

-Higher recruitment SSB > 40,000 mt

Projection

EGB Haddock

- 2012 catch of $16,000 \mathrm{mt} \rightarrow 50 \%$ risk $\mathrm{F}>\mathrm{F}_{\text {ref }}$
-No biomass decline from 2012 to 2013 (2010 YC)
- $F=0.15$ in 2010 ; F below $F_{\text {ret }}(0.26)$ since 2007
- 2010 YC exceptional: preliminary est. ~ 557 M
- Except for the 2000,2003,2010 YCs, recruitment has averaged 9 million fish at age 1 since 1990
- Biomass will decline in 2012 but expected to increase in 2013 as 2010 YC enters fishery
- Fishing up to $F_{\text {ref }}$ does not pose conservation concerns for haddock in near future

GB Yellowtail Flounder

Georges Bank Yellowtail flounder

US catches:
SA 522,525, 561,562

CA catches:

 551,552
Catch

- 2010 USA + CA catch :1,160 mt ; discards 42\% of catch
- Decline 36\% from 1,806 mt in 2009
- US catch: 943 mt (654 mt landings, 289 mt discards)
- CA catch: 217 mt (17 mt landings; 200 mt discards)

3+ Biomass

-1995: 2,100 mt -2003: 10,900 mt -2006: 2,700 mt -2011: 9,300 mt

SSB and Recruitment

- 1998-2001 avg. recruit. ~ 22.2 million age 1 - 2005 YC ~16.8 mil. \& 2006 YC ~17.2 mil. -2007-2008 YCs : 8.0-5.0 mil.
- 2009 poorest ~0.9 mil.

Fishing mortality

F > Fref (0.25) during 1973-2009
2010 F= $0.13<$ Fref

Projection Risks \& 2012 TAC

Probability of exceeding $\mathbf{F}_{\text {ref }}$	25%	50%	75%
Split Series	1,400	1,700	1,900
Split Series rho adjusted	600	750	900
Single Series rho adjusted	1,400	1,700	1,900

Retrospective bias: overestimate biomass

Relative change in median biomass 2012 to 2013

2012 Catch (mt)	Split Series	Split Series rho adjusted	Single Series rho adjusted
600	$+22 \%$	$+25 \%$	0%
750	$+20 \%$	$+20 \%$	-2%
900	$+18 \%$	$+16 \%$	-3%
1,400	$+12 \%$	$+1 \%$	-9%
1,700	$+8 \%$	-8%	-13%
1,900	$+5 \%$	-14%	-15%

Split : 2012 catch of 2300 mt = no change in B in 2013

Rho adj: 2012 catch: 1400 mt = 1% inc. in B in 2013

USA rebuilding scenario for yellowtail fld.

- Calculate fishing mortality which results in a 50% probability of reaching 43,200 mt (Table 24 - assessment doc)
- Rebuilding target cannot be achieved by 2016 even with no fishing
- At $F=0.08,50 \%$ P rebuilding achieved by 2017 with 2012 catch of 600 mt

Summary

- 2005 YC not strong in surveys or catch
- Adult biomass (3+) in 2011 slightly higher than 2010
- 2010 SSB lower than 2009
- 2007-2009 recruitment among lowest
- Expect SSB decline in near future if low rct. persists
- F $2010=0.13$
- F 2008 and 2009 were $=0.15$ now 0.27-0.28
- Increased uncertainty: retrospective pattern reemerged
- USA requirement for a rebuilding strategy - not attainable in short term with current productivity
- TRAC: TAC 900-1,400 mt BUT highly dependent on recruitment assumption

