JUNE 2011 TRAC

Eastern GB cod, EGB haddock, and GB yellowtail flounder

NEFMC Danvers, MA September 28, 2011

Allocation Shares

	Resour									
	Utiliza	_								
***			Haddock	Ytl						
USA		40%	45%	98%						
CANADA		60%	55%	2%	_					
	_					esource Util			. ~.	
-		ce Dis	tribution			Distribution	Weighting	Alle	ocation Sh	ares
	Survey Year	Cod	Haddock	Ytl	Fishing Year	Utilization	Distribution	Cod	Haddock	Ytl
USA			20%	54%	2002	40%	60%	27%	30%	72%
CANADA		82%	80%	46%	2002	1070	0070	73%	70%	28%
USA	2001	14%	16%	64%	2003	40%	60%	24%	28%	78%
CANADA		86%	84%	36%				76%	72%	22%
USA	2002	12%	26%	62%	2004	40%	60%	23%	34%	76%
CANADA		88%	74%	38%				77%	66%	24%
USA			27%	56%	2005	35%	65%	26%	33%	71%
CANADA		82%	73%	44%				74%	67%	29%
USA	2004	14%	29%	56%	2006	30%	70%	22%	34%	69%
CANADA		86%	71%	44%				78%	66%	31%
USA	2005	21%	29%	63%	2007	25%	75%	26%	33%	72%
CANADA		79%	71%	37%				74%	67%	28%
USA	2006	26%	32%	73%	2008	20%	80%	29%	35%	78%
CANADA		74%	68%	27%	2000	2070	0070	71%	65%	22%
USA	2007	29%	36%	73%	2009	15%	85%	31%	37%	77%
CANADA		71%	64%	27%	2007	1370	0370	69%	63%	23%
USA	2008	23%	40%	60%	2010	10%	90%	25%	40.5%	64%
CANADA		77%	60%	40%				75%	59.5%	36%
USA			43%	50%	2011	10%	90%	19%	43%	55%
CANADA		83%	57%	50%				81%	57%	45%
USA			43%	44%	2012	10%	90%	24%	43%	49%
CANADA		78%	57%	56%				76%	57%	51%

Eastern GB Atlantic Cod Management Unit

Management Unit

USA: SA 561,562

CA: SA 551,552

Catch

- USA+CA 2010 total catch: 1,326 mt (CY); 221 mt discards
- USA 2010 catch 486 mt: 357 mt landings; 129 mt discards
- Canadian 2010 catch 840 mt: 748 mt landings; 92 mt discards
- US: 100% quota, CA: 83% quota

Assessment

- Two VPA formulations: split "M 0.2" & "M 0.5"
- Natural mortality (M) = 0.2 for all ages in "M 0.2" model, increased M for ages 6+ in "M 0.5" model after 1994
- •Survey indices split in 1993-1994 for both models (change in sv catchability an alias for unknown mechanism that produces better fitting model)
- Benchmark: consider both model formulations until the fate of the 2003 year class has been documented, thus providing information on M.
- •Retrospective: overestimate B, underestimate F.

3+ Biomass (dotted lines)

- -3,288 mt (split M 0.2) / 5,088 mt (split M 0.5) 2011
- Increase since 2004/05 due to 2003 year class
- Biomass is 2nd lowest in both models

Survey & VPA 1+ Biomass

- 1+ popn. biomass & SV biomass indices:
 - fluctuating at low values since 1994

Recruitment

M 0.2 - 2003 yc (2.8 mil.) ~ 1992 ;strongest since 1998
M 0.5 - 2003 yc (4.1 mil.) ~ 1996 ;strongest since 1996
2007-2008-2009 YCs (0.8 mil. – 1.2 mil. age 1 fish)
~among weakest in time series

Fishing Mortality

- 2010 F= 0.41 (M 0.2) / 0.25 (M 0.5).
- Among lowest F on record; still above F_{ref}
- $F > F_{ref}$ (0.18) for entire time series

Stock Recruitment

Remain at low productivity; low weights at age Rct event more likely > 30,000 mt SSB

2012 Projection : Fref

Probability	of excee	ding Fref i	n 2012	25%	50%	75%
Split M 0.2				525 mt	600 mt	700 mt
Split M 0.5				825 mt	925 mt	1,025 mt

M 0.2 model: A catch of about 600 mt in 2012 will result in a neutral risk (50%) that the fishing mortality rate in 2012 will exceed F_{ref}

Split M 0.5 model: A catch of about 925 mt in 2012 will result in a neutral risk (50%) that the fishing mortality rate in 2012 will exceed Fref

2012 Projection : Biomass

Risk that the 4+ adult biomass in 2013			
will be lower than the 2012 biomass	25%	50%	75%
Split M 0.2	1,050 mt	1,350 mt	1,650 mt
Split M 0.5	500 mt	900 mt	1,350 mt

Split M 0.2: 1,350 mt catch \rightarrow results in 50% risk that 4+ biomass in 2013 < 2012

Split M 0.5: 900 mt catch → results 50% risk that 4+ biomass in 2013 < 2012

2012 Projection : Biomass

Risk that the 4+ adult biomass in 2013			
will not increase by 10%	25%	50%	75%
Split M 0.2	700 mt	1,000 mt	1,350 mt
Split M 0.5		300 mt	850 mt

Split M 0.2: 1,000 mt catch results in 50% risk that 4+ biomass in 2013 will not increase by 10%

Split M 0.5: 300 mt catch results in 50% risk that 4+ biomass in 2013 will not increase by 10%

EGB Cod

Risk that the 4+ adult biomass in 2013			
will not increase by 20%	25%	50%	75%
Split M 0.2	350 mt	650 mt	1,050 mt
Split M 0.5			350 mt

Split M 0.2: 650 mt catch results in 50% risk that 4+ biomass in 2013 will not increase by 20%

Split M 0.5: No amount of catch results in 50% risk that 4+ biomass in 2013 will not increase by 20%

EGB Cod

2011 Projection

	Split M 0.2			Split M 0.5		
	25%	50%	75%	25%	50%	75%
Probability of exceeding Fref in 2012	525 mt	600 mt	700 mt	825 mt	925 mt	1,025 mt
Risk that the 4+ adult biomass in 2013						
will be lower than the 2012 biomass	1,050 mt	1,350 mt	1,650 mt	500 mt	900 mt	1,350 mt
Risk that the 4+ adult biomass in 2013						
will not increase by 10%	700 mt	1,000 mt	1,350 mt		300 mt	850 mt
Risk that the 4+ adult biomass in 2013						
will not increase by 20%	350 mt	650 mt	1,050 mt			350 mt

Catch advice should be lower than shown:

- The retrospective bias is not taken into account in these projections
- The split series introduces a change in survey catchability, which is an alias for a mechanism that is not understood - adds uncertainty to the model results.

Summary

- F reduced but still above F_{ref}; retrospective bias
- Recent recruitment among poorest
- Low numbers: 7+ fish; Reduced weights at age
- 2nd lowest biomass; Fishing below Fref will maintain a higher biomass
- Unable to benefit from 2003 YC: F > Fref
- Rebuilding: not w/o improved recruitment and F<Fref
- · 2 models equally viable & both should be considered
- Catch advice should be lower than shown:retrospective bias not taken into account in projections

Eastern GB Haddock

Management Unit

USA: SA 561,562

CA: SA 551,552

Catch

CY: Total 2010 catch: 18,794 mt

US: 2,201 mt; Canada: 16,592 mt

FY: Quota taken: US ~ 15%, CA ~ 94%

2010 F = 0.15, below or near Fref since 1995

F now estimated as average of ages 5-8

Biomass

- 2010 biomass: 93,400 mt
- 2009 record high 162,800 mt

Recruitment

- Preliminary est. 2010 YC ~ 557 mil.
- Rct.~ 9.0 mil. since 1990,w/o '00,'03,'10

EGB Haddock

•Higher recruitment SSB > 40,000 mt

Projection

- 2012 catch of 16,000 mt \rightarrow 50% risk F > F_{ref}
- No biomass decline from 2012 to 2013 (2010 YC)

Summary

- F = 0.15 in 2010; F below F_{ref} (0.26) since 2007
- 2010 YC exceptional: preliminary est. ~ 557 M
- Except for the 2000,2003,2010 YCs, recruitment has averaged 9 million fish at age 1 since 1990
- Biomass will decline in 2012 but expected to increase in 2013 as 2010 YC enters fishery
- Fishing up to F_{ref} does not pose conservation concerns for haddock in near future

GB Yellowtail Flounder

Georges Bank Yellowtail flounder

US catches: SA 522,525, 561,562

CA catches: 551,552

Catch

- 2010 USA + CA catch :1,160 mt; discards 42% of catch
- Decline 36% from 1,806 mt in 2009
- US catch: 943 mt (654 mt landings, 289 mt discards)
- CA catch: 217 mt (17 mt landings; 200 mt discards)

3+ Biomass

•1995: 2,100 mt

•2003: 10,900 mt

•2006: 2,700 mt

•2011: 9,300 mt

SSB and Recruitment

2010 SSB ~ 8,800 mt

- 1998-2001 avg. recruit. ~ 22.2 million age 1
- 2005 YC ~16.8 mil. & 2006 YC ~17.2 mil.
- 2007-2008 YCs: 8.0-5.0 mil.
- 2009 poorest ~0.9 mil.

F > Fref (0.25) during 1973-2009

2010 F = 0.13 < Fref

Projection Risks & 2012 TAC

GB YTF

Probability of exceeding F _{ref}	25%	50%	75%
Split Series	1,400	1,700	1,900
Split Series rho adjusted	600	750	900
Single Series rho adjusted	1,400	1,700	1,900

Retrospective bias: overestimate biomass

Relative change in median biomass 2012 to 2013

		Split Series	Single Series
2012 Catch (mt)	Split Series	rho adjusted	rho adjusted
600	+22%	+25%	0%
750	+20%	+20%	-2%
900	+18%	+16%	-3%
1,400	+12%	+1%	-9%
1,700	+8%	-8%	-13%
1,900	+5%	-14%	-15%

Split: 2012 catch of 2300 mt = no change in B in 2013

Rho adj: 2012 catch: 1400 mt = 1% inc. in B in 2013

USA rebuilding scenario for yellowtail fld.

- Calculate fishing mortality which results in a 50% probability of reaching 43,200 mt (Table 24 – assessment doc)
- Rebuilding target cannot be achieved by 2016 even with no fishing
- At F=0.08, 50% P rebuilding achieved by 2017 with 2012 catch of 600 mt

- 2005 YC not strong in surveys or catch
- Adult biomass (3+) in 2011 slightly higher than 2010
- 2010 SSB lower than 2009
- 2007-2009 recruitment among lowest
- Expect SSB decline in near future if low rct. persists
- F 2010 = 0.13
- F 2008 and 2009 were = 0.15 now 0.27-0.28
- Increased uncertainty: retrospective pattern reemerged
- USA requirement for a rebuilding strategy not attainable in short term with current productivity
- TRAC: TAC 900-1,400 mt BUT highly dependent on recruitment assumption